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Abstract

Deep Learning has been used with great success in medical image analysis. In particular, the
use of Convolutional Neural Networks (CNNs) has led to state-of-the-art diagnostic capabilities
in clinical applications. In the case of any Neural Network, there is the looming issue of the ‘black
box’ problem – the fact that we do not necessarily understand why decisions are made when
they are made. �e use of heatmapping with Deep Taylor Decomposition allows us to visualise
which components of an image allow for certain decisions to be made by a network. We look
at heatmaps generated from a Neural Network based on the decision of whether an MRI image
displays an ‘aged’ brain or not. We compare the salient regions of the heatmap to predicted areas
of brain ageing to determine how the network characterises brain ageing features.
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1 Introduction

1.1 Brain Ageing
While most neurodegenerative diseases are presented with increased risk with age, it is well-known
that ageing itself a�ects the structure and function of the brain regardless of the presence of disease.
Ma�son and Arumugam [1] give a summary of the most pertinent aspects of brain ageing. While
the ageing of the brain roughly parallels that of other organs and systems in the body, it is arguably
the most notable and exaggerated ageing pathway, with its e�ects largely manifesting themselves
both cognitively and physically.

We are most interested in the physical (and particularly the more clearly visible) traits of the
ageing brain. Aggregation of proteins such as amyloid plaques and tau tangles are common results
of lifetime accumulations of reactive oxygen species in the body, manifesting themselves in the
brain in a particularly aggressive manner. Such aggregations are seemingly causal to diseases such
as Huntington’s and Alzheimer’s. DNA repair decreases with age, and it is thought that telomere
shortening and other DNA damage is not only a biomarker of ageing, but a cause thereof. Neuro-
genesis (the formation of new neurons) and neural plasticity markedly decrease with age, leading
to decreased cognitive ability. In�ammation generally increases in the brain with age, and is aggra-
vated by cellular senescence and reactive oxygen species.

Other major physical changes in the aged brain include the thinning of the cortex and the dilation
of the cerebral ventricles. In particular, the volumetric decrease in grey-ma�er in the brain which
comes with age seems to be a hallmark of cognitive decline. �ese large-scale physical changes are
those for which we will be looking in particular in the analysis of MRI images.

We see that there are many tell-tale signs of brain ageing, which help us to characterise exactly
what we are looking for in the analysis of brain images. It is our goal to see if these are physical
changes that our machine learning techniques will recognise.

1.2 Machine Learning in Medical Images Analysis
A major tool of modern medicine is the use of machine learning in medical image analysis. Litjens
et al. [2] give a thorough breakdown of such techniques and summarises 300 major contributions to
the �eld as of the date of publication. Major implementations of object recognition networks include
those designed to �nd cancerous tumours from mammograms, MRI and fMRI scans, PET scans, and
ultrasound imaging. Other abnormalities such as tissue �brosis, aneurysms and cysts can also be
detected.

Hallmarks of ageing are made visible to radiologists most prominently through the use of imag-
ing techniques like MRI, PET and ultrasound. Ageing leaves its traces throughout the body, leaving
evidence such as decreased bone density, degeneration of elastin and type I collagen [3, 4], and age-
ing of the brain as discussed in Section (1.1).

�e most common architecture for neural networks in medical imaging is that of Convolutional
Neural Networks (CNNs). �ese are able to break images down into characteristic areas, �rst by
local properties in groups of pixels, then by larger and larger a�ributes of images. In doing so,
CNNs allow accurate assessment of the presence of particular a�ributes or objects in images, and
are widely regarded as the best Neural Net architecture for the job. Most state-of-the-art classi�er
networks, such as GoogLeNet use some convolutional structures.
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1.3 Convolutional Neural Networks
In the case of colour images (for which they are most commonly used), Convolutional Neural Net-
works instead of manipulating vectors are used to manipulate tensors of rank 3. An input image of
height h and width w has dimensions h ˆ w ˆ 3 because of the two spatial dimensions and three
colour parameters corresponding to each pixel (RGB activations in the pixel).

�e architecture of CNNs is comprised of the initial input layer, followed by some number of
sequences of convolution layers and pooling layers with interspersed nonlinearity layers (for exam-
ple, a sigmoid or ReLU function), followed then by at least one fully-connected layer – the last of
which corresponds to the output layer. An example structure is shown below in Figure (1).

Figure 1: An example of the structure of a CNN used to classify handwri�en dig-
its from the MNSIT dataset. Image courtesy of https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Convolution layers have the e�ect of scanning for speci�c a�ributes in small sections of pre-
vious layers. In the case of facial recognition, the �rst convolution layer of a CNN might look for
outlines of small features such as eyelashes or nostrils; later convolution layers in the network might
look for larger a�ributes, such as compiling detection of the presence of an eye from the presence
of eyelashes, brows, a pupil etc.

In the �rst convolution layer, the scan is executed by passing a �lter tensor of weights over
the input image. �e �lter tensor is of dimensions h1 ˆ w1 ˆ 3, typically with h1 “ w1 “ 3 or
h1 “ w1 “ 5. �e third dimension of the tensor is 3 in this case in order to correspond with the
third dimension of the input tensor image (all colours of the image must be scanned through). �e
�lter is passed over the input image from le� to right, and top to bo�om (as one reads in English)
with stride size s, typically with s “ 1 or s “ 2. In this passing over, the �lter is ‘do�ed’1 with the
corresponding region of the input image to produce a real number output for each position. For one
�lter, it is easy to see that the number of such outputs is

ˆ

h´ h1
s

` 1

˙

ˆ

´w ´ w1

s
` 1

¯

” H1 ˆW1

which we can arrange in a grid of such dimensions. For each �lter in the convolution layer, there is
a corresponding such grid, and we arrange these to form another tensor of rank 3. �us the output

1�e inner product is a rank-reducing operation on tensors by one. Here what we mean by the dot product is the
sum of products of corresponding tensor elements, in the spirit of the dot product of vectors.
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of the �rst convolution layer of the network is a tensor of dimensions H1ˆW1ˆF , where F is the
number of desired �lters in the layer. �e intuition behind having multiple �lters per convolutional
layer is that each �lter should learn to detect a speci�c feature at a given scale.

Subsequent convolution layers work in the same vain as the �rst, although the �rst does away
with the colour separations in the third axis of the tensor, and for all subsequent layers, the third
axis corresponds to di�erent a�ribute searches from the most recent convolution layer.

For most CNNs, we are able to assume that the weights of a �lter in a convolution layer can re-
main �xed with respect to the previous layer – that is to say, how we search for an a�ribute should
not depend on where in the image we are looking. �is allows us to reduce drastically the number
of parameters in the convolution layers. �is is not always exactly the case though; for example,
in the use of facial recognition where the subject’s face is symmetric in the input space. �en, for
example, we will have to look for their ears di�erently one one side than on the other (because they
are oriented di�erently on either side – a �lter that is very good at detecting le� ears is likely not
very good at detecting right ears).

Pooling layers have the e�ect of reducing the dimensions of the tensor passing through, while
conserving the rank, in order to reduce the number of parameters in the network. �ese are imple-
mented by performing some operation on square grids in the matrices corresponding to the �rst two
axes of the incoming tensor. Several methods of pooling have been proposed, the most commonly
implemented of which are sum pooling, average pooling and max pooling. Max pooling is imple-
mented by looking at n ˆ n arrays in each matrix corresponding to a section of constant position
on the third axis in the tensor. Commonly, we use n “ 2, so we take the maximum value of the four
elements in the subarray. �e dimension of the third axis therefore remains the same a�er a pooling
layer, and we reduce the dimensions of the �rst two axes by a factor of 1

2
. Sum pooling works by

the same principle, but taking the sum of elements in the n ˆ n array instead of the max element.
Similarly, average pooling takes an average of such elements.

A�er the �nal pooling layer, the network has one or more fully connected layers, the last of
which outputs the decision of the network in a vector.

2 Relevance Decomposition
�e issue of understanding why Neural Networks make decisions has been around since the incep-
tion of this method of machine learning, and several methods have been developed to combat it.
Heatmapping is a very useful method of determining the reasons for image recognition decisions.
A heatmap is a measure of the relevance of pixels of an image to the corresponding decision by the
network into which the image is fed.

It is important to note that although we can measure input layer relevances according to de-
cisions, we as humans are still the means of interpretation for what these relevances signify with
respect to what we are looking for. �is makes the interpretation of the heatmaps inherently subjec-
tive. �is is not a fault of the heatmap methods; in fact, the question of ‘what makes this object what
it is?’ is more a question of ‘what makes this object what I call it?’ �is means the task of image
recognition in and of itself is based on the subjective classi�cations by humans of said objects. It
is remarkable therefore that some image recognition so�ware is even comparable to human-level
recognition abilities with regards to images created by humans (such as the MNIST handwri�en
digit dataset); however, it makes sense that for something less subjective such as cancer screening
(the truth of which is not subjective), some well-designed Neural Nets perform very well. �e issue
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remains though, that the interpretation of the relevance mappings is necessarily subjective, and ne-
cessitates the background knowledge of the interpreter on the subject at hand.

Montanvon et al. [5] explain the methods of Taylor Decomposition and Deep Taylor Decom-
position on the layers of classi�er Neural Networks. �ese are performed neuron-by-neuron in a
layer-dependent manner so as to propagate relevance backwards through the network in a man-
ner similar to backpropagation training. Figure (2) shows a basic schematic of how the backwards
relevance propagation methods are executed.

Figure 2: Redistribution of relevances across network layers and neurons. Courtesy of http://
www.heatmapping.org/deeptaylor/

Generally, the method of relevance redistribution is a decomposition of the output value of the
network onto the input variables. Since in our case the input variables correspond to the pixels of
an image, we will refer to these input variables as the pixels. As is the convention of [5], the pixels
are indexed by the variable p, such that the set of input pixels is txpu.

Consider a smooth positive-valued function f : Rd Ñ R`. For our purposes, the input x “
pxpq P Rd of f is an image consisting of d pixels |txpu| “ d. fpxq indicates the presence of objects in
the input image (in other words, the network f has been trained to desirable performance standards)
with fpxq “ 0 indicating a lack of the object, and fpxq ą 0 indicating with proportional certainty
the presence of the object in question.

�e goal is to associate with each pixel xp a relevance Rppxq which conveys the relevance of the
pixel xp to the output fpxq. �en, we de�ne the heatmap of the image as Rpxq “ pRppxqq having
the same dimensions as x, pRppxqq P Rd.

We would like our heatmaps to satisfy certain properties going forward. For one, we would like
pixel values of Rpxq to be non-negative, so that no pixels can contradict the presence of the object in
question. We would also like for the total relevance to be unchanged, so that the heatmap relevance
re�ects the relevance of the object in question as output by our function f . We therefore de�ne the
following properties:
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De�nition 1. A heatmapping Rpxq is called conservative if:

@x : fpxq “
ÿ

p

Rppxq

De�nition 2. A heatmapping Rpxq is called positive if:

@x, p : Rppxq ě 0

De�nition 3. A heatmapping Rpxq is called consistent if it is both conservative and positive.

2.1 Taylor Decomposition
If we have that f is an arbitrary di�erentiable function, we can look at the Taylor expansion of f
around some root point x̃, which is a point close to x with fpx̃q “ 0. In terms of the classi�er
Network, x̃ is an image as similar as possible to x which the classi�er will deem having no presence
of the object in question. In terms of the input variable space, the vector x̃ satis�es fpx̃q “ 0 while
being close to x with respect to some metric in the space – one might think of this as the nearest
root of f to x. To �rst order, such a Taylor expansion is given by

fpxq “ fpx̃q `

ˆ

Bf

Bx
|x“x̃

˙J

¨ px´ x̃q ` ε (2.1)

where ε denotes terms of second order or higher. �en we can �nd the sum of elements Rppxq
from the fact that:

ˆ

Bf

Bx
|x“x̃

˙J

¨ px´ x̃q “
ÿ

p

Bf

Bxp
|x“x̃ ¨ pxp ´ x̃pq “

ÿ

p

Rppxq

and so

Rpxq “
Bf

Bx
|x“x̃ d px´ x̃q (2.2)

where d denotes the element-wise product.

It is well-known that the gradient ∇fpxq|x“x̃ at the nearest root point to a vector x points in
the same direction as the vector px ´ x̃q (given that f is smooth). Hence, their element-wise prod-
uct is non-negative, and so this de�nition of relevance propagation satis�es positivity according to
De�nition (2). It does not necessarily satisfy conservativeness, however, due to the possibility of
higher-order terms possibly lurking in ε.

In general, we would like to work in a network composed of multiple layers, and so this method
is not immediately implementable – �nding the factors Bf

Bxp
is by no means trivial in this case. We

also need to tackle the issue of �nding an appropriate root point x̃.
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2.2 Deep Taylor Decomposition
We introduce now the concept of Deep Taylor Decomposition, which expands on the Taylor De-
composition method, and aims to alleviate the issue of non-conservativeness. It is also generally
applicable to multi-layer networks. It is easy to see that the function f learned by the network is in
fact comprised of simpler subfunctions from one layer in the network to the next. �is is a prop-
erty of Deep Networks that is exploited by the method of Deep Taylor Decomposition. In fact, such
subfunctions simply comprise a�ne functions of inputs followed by nonlinear activation functions
such as ReLU or So�max.

We can assume that the function fpxq encoded by the output neuron xf can be decomposed
onto the set of neurons at a given layer, and denote the neurons in this layer xj with associated
relevance Rj . We then consider the problem of decomposing Rj onto the set of neurons one layer
lower in the network, xi. For visual supplementation to this, refer back to Figure (2). Assuming that
there is a function relating these two quantities, Rjppxiqq, we can perform the desired decomposition
by Taylor expansion.

We de�ne a root point of the function, px̃iqpjq, using an index pjq to denote the fact that each of
the neurons xj in the current layer requires its own root point. �en the Taylor decomposition is
given by

Rj “

ˆ

BRj

Bpxiq
|px̃iq

pjq

˙J

¨
`

pxiq ´ px̃iq
pjq
˘

` εj “
ÿ

i

BRj

Bxi
|px̃iq

pjq

´

xi ´ x̃
pjq
i

¯

` εj (2.3)

where again, εj denotes terms of order 2 or higher. Now, we realise that
ÿ

i

BRj

Bxi
|px̃iq

pjq

´

xi ´ x̃
pjq
i

¯

“
ÿ

i

Rij

where Rij is the relevance propagated from a neuron xj to one xi a layer below. So we can
recover the relevance for the neuron xi from

Ri “
ÿ

j

Rij

to get that

Ri “
ÿ

j

BRj

Bxi
|px̃iq

pjq

´

xi ´ x̃
pjq
i

¯

(2.4)

�is method of layer-to-layer decomposition is conservative, by De�nition (1), as long as
ř

iRij “

Rj ; that is, as long as the terms εj vanish. �us, if each layer-to-layer Taylor decomposition is con-
servative as such, the full Deep Taylor Decomposition is conservative. Similarly, since we saw before
that the Taylor Decomposition satis�es the positivity of De�nition (2), the full Deep Taylor Decom-
position satis�es positivity. �us, as long as the terms εj vanish in each layer-to-layer propagation,
the entire decomposition is consistent, according to De�nition (3). Indeed, the terms εj do vanish,
since we saw that the subfunctions between layers are in fact a�ne.
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2.2.1 Behaviour in a Single-Layer Network

In Figure (3), we see the schematic of a neural net with one hidden layer, which is a detection-pooling
layer with de�nition

xj “ max

#

0,
ÿ

i

xiwij ` bj

+

; xk “
ÿ

j

xj (2.5)

Figure 3: Image courtesy of the original Deep Taylor Decomposition paper, [5]

Redistribution of the relevance Rk “ xk onto the hidden layer neurons begins with the expres-
sion

Rk “
ÿ

j

xj

which follows from above. �usly, we can recover the relevances Rj from the original Taylor
decomposition formula, giving us

Rj “
BRk

Bxj
|px̃jq pxj ´ x̃jq (2.6)

Now, in the case of the sum-pooling layer, we can simply �nd a root point px̃jq from the neces-
sities that

1.
ř

j x̃j “ 0,

2. All components of the root point must be non-negative, due to the expectation of the use of
the maxp0, ¨q function in the hidden layer.

�e only such point is px̃jq “ 0. With this choice, and using the fact that the sum-pooling
method gives BRk

Bxj
“ 1, we �nd the redistribution rule

Rj “ xj (2.7)
so in the pooling layer the relevance is redistributed on the detection layer neurons in propor-

tion to their activation values. We now look to decompose relevances onto the neurons of the input
layer, txiu.

From the relation in Equation (2.7) and the de�nition of the activations of the hidden layer, we
can describe the relevances Rj in terms of the input neuron activations by

Rj “ max

#

0,
ÿ

i

xiwij ` bj

+

(2.8)
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To redistribute the relevancesRi, we can now Taylor expand this relation according to Equation
(2.4) to get

Ri “
ÿ

j

BRj

Bxi
|px̃iq

pjq

´

xi ´ x̃
pjq
i

¯

(2.9)

We are posed again with the task of �nding the root point px̃iqpjq.

�e w2-Rule

�e simplest case is an unconstrained space from which to choose px̃iqpjq. We can in this case
choose the closest root of f to pxiq by the Euclidean metric or any equivalent. In the case that
Rj is non-zero, the nearest root px̃iqpjq of Rj is given by the intersection of the plane equation
ř

i x̃
pjq
i wij ` bj and the line of steepest descent px̃iqpjq “ pxiq ` twj, for t P R, and where wj is

the vector of weights between the neurons pxiq and the single neuron xj . �is intersection occurs
when:

ÿ

i

“

xiwij ` tpwijq
2
‰

` bj “ 0

ñ t “
´1

ř

ipwijq

«

ÿ

i

xiwij ` bj

ff

ñ px̃iq
pjq
“

˜

xi ´
wij

ř

ipwijq

«

ÿ

i

xiwij ` bj

ff¸

.

So the rule for relevance redistribution onto the xi neurons becomes:

Ri “
ÿ

j

w2
ij

ř

i1 w2
i1j

Rj (2.10)

�is is true of course even when Rj “ 0, such that there is no relevance contribution to xi from
an xj .

�e z`-Rule

In the �rst case of domain restriction, we examine the case where the input domain is restricted
to R`. �is occurs, for example, in the spaces following ReLU activations. If we de�ne the vector
pxiq

´ as the negatively weighted components of pxiqwith zeros elsewhere, this has the property that
fippx

´
i qq “

ř

i x
´
i wij ` bj is zero or negative, since these are the negatively weighted components

of pxiq (here, fi is the sub-function of f acting on the pxiq vector in the feedforward section of the
network)2. �en the line segment

`

pxiq, px
´
i q
˘

has at least one root point of fi.

Now, we are looking for the intersection of the plane equation
ř

i x̃
pjq
i wij ` bj and the line

described by px̃iqpjq “ pxiq ` tppxiq ´ px
´
i qq “ pxiq ´ tpx`i q, where now px`i q is the vector of

positively weighted components of pxiq and zeros everywhere else. �is can also be described as
px`i qpwijq “ pxiqpw

`
ijq. In this notation:

2Note that we do require here that the biases bj are non-positive – this is an easy �x and does not a�ect anything
other than the manner in which the Network is optimised.
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ÿ

i

“

xiwij ´ txiw
`
ijwij

‰

` bj “ 0

ñ t “
1

ř

i1 xi1w`i1jwi1j

«

ÿ

i

xiwij ` bj

ff

ñ px̃iq
pjq
“

˜

xi ´
xiw

`
ij

ř

i1 xi1pwi1jq
2

«

ÿ

i

xiwij ` bj

ff¸

since summing over terms with w`ijwij is the same as summing over the terms instead with
pw`ijq

2. �en, the propagation rule becomes:

Ri “
ÿ

j

z`ij
ř

i1 z
`
i1j

(2.11)

where we have de�ned z`ij ” xiw
`
ij .

�e zB-Rule

�e pixel spaces of image recognition networks are o�en box-constrained. �is means that the
pixels are in the domain B “ tpxiq : li ď xi ď hi@i P r1, ..., dsu, where the lower bounds li ď 0
and the upper bounds hi ě 0 are respectively the lowest and highest values that a pixel xi can
take. Now we restrict the search for the root point to the line segment ppli1wiją0 ` hi1wijă0q, pxiqq,
where the vector 1wiją0 is the d-vector with ones where w`ij is non-zero and zeros elsewhere, and
1wijă0 is the d-vector with ones where w´ij is non-zero and zero elsewhere. Similarly to before, the
vector px´i q ” pli1wiją0 ` hi1wijă0q has fippx´i qq ď 0, and so somewhere on the line segment is a
root point of fi. Now, px̃iqpjq can be found at the point of intersection between the plane equation
ř

i x̃
pjq
i wij ` bj and the line px̃iqpjq “ pxiq ` tppxiq ´ px´i qq. �en:

ÿ

i

“

xiwij ´ txiwij ` tpliw
`
ij ` hiw

´
ijq
‰

` bj “ 0

ñ t “
1

ř

i1

“

xi1wi1j ´ li1w`i1j ´ hi1w´i1j

‰

«

ÿ

i

xiwij ` bj

ff

ñ px̃iq
pjq
“

˜

xi ´
xi ´ li1wiją0 ´ hi1wijă0

ř

i1

“

xi1wi1j ´ li1w`i1j ´ hi1w´i1j

‰

«

ÿ

i

xiwij ` bj

ff¸

Since summing over terms with factors of 1wijă0w
´
ij is the same as summing simply over terms

instead with w´ij (and similarly for terms with 1wiją0w
`
ij , we sum instead over w´ij ). �en our rele-

vance propagation rule becomes:

Ri “
ÿ

j

zij ´ liw
`
ij ´ hiw

´
ij

ř

i1

“

zi1j ´ li1w`i1j ´ hi1w´i1j

‰Rj (2.12)

where zij ” xiwij .

Proposition 1. For all learnable functions f of a single-layer network, the w2-rule is consistent in
the sense of De�nition (3).

9



Proof. We will �rst show that the w2-rule is conservative, in the sense of De�nition (1). To this end,
note that

ÿ

i

Ri “
ÿ

i

«

ÿ

j

w2
ij

ř

i1 w2
i1j

Rj

ff

“
ÿ

j

ř

iw
2
ij

ř

i1 w2
i1j

Rj

“
ÿ

j

Rj

“
ÿ

j

xj

“ fppxiqq

where we have assumed that the weights’ squares w2
ij do not sum to 0 for any j (i.e. they are not

all zero).

Now we show that the w2-rule is positive in the sense of De�nition (2). Observe that

Ri “
ÿ

j

w2
ij

ř

i1 w2
i1j

Rj

“
ÿ

j

w2
ij

loomoon

ą0

1
ř

i1 w2
i1j

looomooon

ą0

Rj
loomoon

ě0

ě 0

In the case that for some j1,
ř

iw
2
ij1 “ 0, then all weights wij1 must be zero, and so since the

biases bj1 ď 0, we will have Rj1 “ 0. �en there is no relevance to redistribute to the lower layer
from this neuron. In either case, we see that the w2-rule is both conservative and positive, and so is
consistent.
Proposition 2. For all learnable functions f of a single-layer network and input activations xi P R`,
the z`-rule is consistent in the sense of De�nition (3).
Proof. �e proof for this rule is identical to that for the w2-rule. In the case that

ř

i z
`
ij ą 0, we

simply replace w`ij in the previous proof by z`ij . In the case where
ř

i z
`
ij “ 0, then similarly to

before, we must have that all zij ď 0, so that due to the negative biases bj the relevance Rj “ 0 and
there is no relevance to propagate to the lower layer.
Proposition 3. For all learnable functions f of a single-layer network and input activations xi P B,
the zB-rule is consistent in the sense of De�nition (3).

Proof. For the slightly more complex zB-rule,Ri “
ř

j

zij ´ liw
`
ij ´ hiw

´
ij

ř

i1

“

zi1j ´ li1w`i1j ´ hi1w´i1j

‰Rj , we �rst show

that the numerator is non-negative for all pxiq P B:

zij ´ liw
`
ij ´ hiw

´
ij “ xipw

`
ij ` w

´
ijq ´ liw

`
ij ´ hiw

´
ij

“ w`ij
loomoon

ě0

pxi ´ liq
looomooon

ě0

` w´ij
loomoon

ď0

pxi ´ hiq
looomooon

ď0

ě 0
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From here, the proof is the same as those for the w2- and z`-rules. Simply replacing w2
ij with

zij ´ liw
`
ij ´ hiw

´
ij gives that for the sum over such i components being greater than 0, the zB-rule

is both positive and conservative. �en in the case that for some j1,
ř

i zij1 ´ liw
`
ij1 ´ hiw

´
ij1 “ 0, we

must have zij1 ´ liw
`
ij1 ´ hiw

´
ij1 “ 0 for each i. We then have three cases:

1. xi “ hi and w`ij1 “ 0. �en the contribution of the input to the neuron xj1 is zij1 “ hiwij1 ď 0.

2. xi “ li and w´ij1 “ 0. �en the contribution of the input to the neuron xj1 is zij1 “ liwij1 ď 0.

3. wij “ 0. �en there is no contribution to the input neuron xj1 and zij1 “ 0.

�us, the total contribution to the neuron xj1 is zj1 “
ř

i zij1 ď 0, and since the biases bj1 ď 0,
we must have Rj “ xj “ 0, and so there is no relevance to propagate backwards.

In either case, we see that the zB-rule is consistent.

2.2.2 Behaviour in Deep Networks

We have assumed up to this point that we are able to �nd functions relating activations in one layer
to the relevances in the higher layer (as emphasised at the beginning of Section (2.2)). It is not always
the case that such functions are known a priori; for example, the convolutional layers of a CNN are
not always understood before empirical analysis of the network. Here – to the end of making our
relevance mappings explicit – we explore the use of relevance models. �ese are functions mapping
sets of neuron activations in a given layer to the relevance of a neuron in a higher layer (usually just
the layer directly higher), and whose outputs can be redistributed onto the input variables in order
to allow backward relevance propagation.

�e �rst of the two relevance models explained in [5] is the Min-max Relevance Model. Consider
the feature extractor of a deep network, feeding forward from a layer of neurons pxiq to pxjq, then
to xk and subsequently pxlq. We would like to try to predict the relevance Rk from the activations
pxiq so as to relate relevances between higher and lower layers. �is model aims to approximate the
relevance Rk from pxiq in a given layer by the output R̂k of a function de�ned by

yj “ max

#

0,
ÿ

i

xivij ` aj

+

,

R̂k “
ÿ

j

yj

where aj “ min t0,
ř

lRlvlj ` dju is a non-positive bias parameter dependent on weights con-
nected to the higher layer pxlq, and the relevances of that layer. �e negative bias prevents the
activation of pyjq in the case that none of the upper-level abstractions of pRlq correspond to de-
tected features in pxiq. In other words, if the relevances pRlq are independent of pxiq, we do not
propagate relevance back to these neurons. �e introduced parameters tvij, vlj, dju are learned by
the relevance model in the minimisation of the optimisation function

minxpRk ´ R̂kq
2
y.

Clearly, this requires further training on a network which itself has likely already had to be
trained for a signi�cant amount of time. Instead of training such a model for each neuron of a net-
work, we would like to exploit global properties of the network to build a relevance model.
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�e Training-Free Relevance Model

Consider now a feature extractor in a deep network de�ned by:

xj “ max

#

0,
ÿ

i

xiwij ` bj

+

, xk “ ||pxjq||q

and the layer pxkq feeds forward into a layer pxlq. Here, the norm || ¨ ||q can represent any
sort of pooling function, such as average, max or sum pooling. Assume that relevance has been
redistributed onto the uppermost of these layers by the z`-rule, such that we know pRlq. �en we
can write

Rk “
ÿ

l

xkw
`
kl

ř

k1 xk1wk1l

Rl.

Now, le�ing
ř

j xj “ ||pxjq||1, we have

Rk “ ||pxjq||q

ř

j xj
ř

j1 xj1

ÿ

l

Rlw
`
kl

ř

k1 xk1w`k1l

”

˜

ÿ

j

xj

¸

ckdk

where ck ”
||pxjq||q
||pxjq||1

is an Lq{L1 norm ratio and dk ”
ř

l

Rlw
`
kl

ř

k1 xk1w`k1l

. �e term dk describes

the ratio between relevances and activations in a layer in terms of the same activations and their
outgoing weights, and the relevances in higher layers. Montavon et al. describe dk as a ‘top-down
contextualisation’ term.

We argue that the terms ck and dk can be modelled as constant under perturbations to in the
lower activations pxjq. �usly, we are able to formulate a training-free relevance model. In this
derivation, it is important to note why we have made use of the z`-rule for relevance propagation.
Not only is this feasible in propagations to lower hidden layers, but it in particular allows us to write
the relevance Rk in terms of the sum of the elements xj , which could not be done for the w2- and
zB-rule.

We will now give arguments as to why the variables ck and dk can be modelled as constants.

• ck “
||pxjq||q
||pxjq||1

. We note �rst that simply rearranging the components of a vector leaves its

norm unchanged. We see that for a general perturbation of the components xj in a dimen-
sionally large vector pxjq, we can approximate the change in component magnitudes simply
as a swapping of components in the vector. If the dimension of the vector is large enough
and the perturbation approximately random, then this swapping of components model of the
vector perturbation leaves the Lq{L1 ratio approximately constant.

• dk “
ř

l

Rlw
`
kl

ř

k1 xk1wk1l

. �e only ways in which the components xj a�ect this term is through

the quantities Rl and xk1 . It is plain to see that small perturbations in pxjq will cause very

li�le change in Rl, and so we say BRl

Bxj
» 0. Since we are only concerned with the e�ect on
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xk1 “ xk, and assuming that there is a large number of neuron activations being summed over
in this denominator, we can argue that the e�ect of perturbations on the sum over k1 terms is
negligible.

With this training-free relevance model, we have the same structure of layer-to-layer relevance
propagation (up to the constant factors ck and dk) for feature extractors as we had in our simple
single-layer networks. Speci�cally, since the pooling function from pxjq to pxkq has no weights:

Rj “
xj

ř

j1 xj1

Rk

so that the relevance Rk is redistributed onto the Rj by proportion of neuron activations xj .
�en:

Ri “
ÿ

j

qij
ř

i1 qi1j

Rj

where we have introduced qij as

qij “

$

’

&

’

%

w2
ij w2-rule

xiw
`
ij z`-rule

xiwij ´ liw
`
ij ´ hiw

´
ij zB-rule

If we choose to decompose Ri via the z`-rule again onto the layer below, we would be able
to use the same training-free model all the way through the network up to the input layer. �us,
we can use the training-free relevance model to redistribute relevances through all hidden layers
of a network, then at the input layer use the w2- or zB-rule to redistribute the lowest hidden-layer
relevances onto Rp.

2.2.3 Application to the MNIST Dataset

Application of the Deep Taylor method of relevance decomposition to the MNIST dataset of hand-
wri�en digits is very straightforward to implement. �is is in no small part due to the ease with
which one can create a Neural Network that very accurately classi�es the test images of the dataset.

One Fully-connected Neural Net was created in this vein with one input layer of 28ˆ 28 “ 784
input neurons, a decision layer of 10 output neurons, and two hidden dense layers – the �rst having
300 neurons and the second, 100 neurons. �is gives a total of 266610 parameters (both weights and
biases), all of which are trainable. �e model was trained over �ve epochs to an accuracy of 98.89%.

�e other network trained on this dataset was a Convolutional Neural Net with an input layer
as a 1 ˆ 28 ˆ 28 ˆ 1 tensor. �is is followed by a 2-dimensional convolution window of dimen-
sions 3 ˆ 3, producing a 1 ˆ 26 ˆ 26 ˆ 32 tensor; the next layer is an average-pooling layer with
output a 1 ˆ 13 ˆ 13 ˆ 32 tensor; then there is another 3 ˆ 3 convolution window with output a
1ˆ 11ˆ 11ˆ 64 tensor, followed by another average-pooling layer which outputs a 1ˆ 5ˆ 5ˆ 64
tensor; then there is a �nal 3ˆ 3 convolution window which outputs a 1ˆ 3ˆ 3ˆ 64 tensor; this is
then �a�ened to a layer of 576 neurons, which is connected to a fully-connected layer of 64 neurons,
itself connected to the �nal (output) fully-connected layer of 10 neurons. �is gives a total of 93322
trainable parameters. �e model was trained over �ve epochs to an accuracy of 99.03%.

�e summaries of these networks are given in the tables below. Both networks were subjected
to Deep Taylor Decomposition on the correct predictions of several randomly chosen test images.
�e resulting heatmaps are shown alongside their corresponding MNIST images in Figures (4) and
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(5). �ese heatmaps are normalised to pixel relevances in the range r0, 1s.

Fully-Connected Network Summary:
Layer (type) Output Shape Param #
=================================================================
flatten1 (Flatten) (None, 784) 0

dense3 (Dense) (None, 300) 235500

dense4 (Dense) (None, 100) 30100

dense5 (Dense) (None, 10) 1010
=================================================================
Total params: 266,610
Trainable params: 266,610
Non-trainable params: 0

Convolutional Network Summary:
Layer (type) Output Shape Param #
=================================================================
conv2d3 (Conv2D) (None, 26, 26, 32) 320

averagepooling2d2 (Average (None, 13, 13, 32) 0

conv2d4 (Conv2D) (None, 11, 11, 64) 18496

averagepooling2d3 (Average (None, 5, 5, 64) 0

conv2d5 (Conv2D) (None, 3, 3, 64) 36928

flatten1 (Flatten) (None, 576) 0

dense2 (Dense) (None, 64) 36928

dense3 (Dense) (None, 10) 650
=================================================================
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0

In the heatmap images of Figures (4) and (5), the darker red colours are associated with lower
relevance, while the lighter colours are associated with higher relevance.

We see that in the Fully-connected Network, based on the hypothesis of the Taylor decompo-
sition, the decision is made largely by considering the area around the �gure itself – in a squared
area which seems to characterise the space in which white pixels are likely to appear in the input
space. �e square area in question is smaller than the full image, and the boundaries of the image
are always completely disregarded in terms of relevance. It is interesting to note the disregard in
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these heatmaps of the digit curve itself.

We see in the CNN that the decision is made largely considering the space very close to the lines
comprising the digits themselves. In several of these example images, we see that not only is rele-
vance limited to the curves themselves, but to ‘characteristic’ parts of the curves. For example, in
5q), we see the heatmap of the number 8 character, in which the most relevant parts are considered
to be the topmost arc and the le� curve of the upper ‘circle’ of the character – by contrast, the areas
considered least relevant are the joints of characteristic lines of the curve, such as the upper le� cor-
ner of the character, and the crossing of the lines in the middle of the character. Relevance in these
images is clearly much more localised to the characters themselves and very li�le is considered in the
surrounding space. �is is positive evidence for the theory that CNNs tend to focus on particular re-
gions (and then subregions, and so on) and their relevance to the decision, in relation to one-another.

In Figure (5), we also see the heatmaps from the output neuron corresponding to what was
considered to be the least likely decision for the digit (for example, in 5c), the image was decided
to be least likely a 6). �ese ‘Anti-heatmaps’, with pixel relevances normalised to r´1, 0s, display
negative relevances in the input layer. It is interesting to note that in the normalised versions, the
heatmaps and their anti-heatmaps are exact negatives. �e sum of corresponding (normalised) pixel
relevances gives 0 for every pixel. Not only is this true for the least likely decisions, but also for
every other possible decision which was not the one made. Perhaps a useful way of thinking about
this is that we ask the Network, “Why is this not a six?” To which the network replies, “Because it
is a four.”

a) 4 b) Heatmap

c) 7 d) Heatmap

e) 8 f) Heatmap

Figure 4: Normalised Heatmaps for three positive predictions of MNIST samples via the Fully-
connected Network

We see by comparison of the heatmaps from the two networks, that the Fully-connected Network
seems to focus on the shape of the space not occupied by the character, which potentially could be
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occupied by it, while the CNN seems to focus on the characteristics of the curves themselves which
make up the digit, with relevance in the la�er case being much more localised.

a) 4 b) Heatmap c) Anti-heatmap

d) 3 e) Heatmap f) Anti-heatmap

g) 7 h) Heatmap i) Anti-heatmap

j) 6 k) Heatmap l) Anti-heatmap

m) 2 n) Heatmap o) Anti-heatmap

p) 8 q) Heatmap r) Anti-heatmap

Figure 5: Normalised Heatmaps and ‘Anti-heatmaps’ for several positive MNIST samples via the
CNN

In Figure (6), we see one of the test set images of the MNIST dataset which was incorrectly
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classi�ed by the CNN, alongside the corresponding heatmap. �e image was of a handwri�en 3,
and was misclassi�ed as a 5. We now delve deeply into the realm of subjectivity to examine why
this misclassi�cation took place. �is is of course anecdotal, but the image is seemingly ambiguous
– particularly insofar as it could be construed either as a 5 or a 3. �e point though is not to defend
the integrity of the CNN’s decision-making. We see that in the heatmap, apart from the middle
horizontal segment of the character, the most salient area of pixels would seem to be the top right
corner of the character. Here, it would appear that the network is interpreting the lack of downward
continuation of the curve at this point (as in the upper arc of the character ‘3’) indicates that the
character is less likely a 3. Due to the geometry of the character further down, then, the most likely
choices for the network to make are 3 and 5 (incidentally, these were the two leading probabilities,
with 5 leading by a small margin). �e �nal, erroneous, decision was thus that the character must
be a 5.

(a) MNIST sample 3 incorrectly classi�ed as a 5 (b) Heatmap

Figure 6

3 Heatmaps For Brain Ageing
We now look to the task of examining salient areas of brain ageing. To this end, we will implement
the heatmaps relevance propagation on the decisions of a neural net which acts as a classi�er (ac-
cording to age) of MRI image data. �e datasets used were supplied by PHOTON AI via the 2019
PAC competition. �e task of the competition was to create a CNN classi�er of the MRI data by age
with the objective of minimising the network’s Mean Absolute Error (MAE).

�e MRI image data used in training the networks was the grey-ma�er MRI image set from the
PAC competition. �ese were stored as a single numpy array of dimensions 342ˆ 100ˆ 124ˆ 104
– that is, 342 scans of dimensions 100ˆ 124 ˆ 104. In Figure (7) are shown some cross-sections of
a randomly chosen subject’s gray-ma�er image.
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(a) Example GM image: sagi�al section (b) Example GM image: frontal section

(c) Example GM image: transverse section

Figure 7

3.1 CNN Structure and Background
In order to extract details about subject ages from the MRI data, a CNN was constructed according
to the same general structure used in [6]. �is paper in fact precipitated the PAC competitions. �e
structure of the corresponding CNN was of repeated blocks, each consisting of a 3D convolutional
layer, followed by a ReLU activation, then another 3D convolutional layer, followed by a Batch-
norm layer, then another ReLU activation, and �nally a 3D average pooling function. In the CNN
concerned in this report, four such blocks were implemented. �is resulted in a network of 253291
parameters, of which 253051 were trainable. �e 240 non-trainable parameters are from the Batch-
normalisation layers, which are used only in training to determine the mean and variance of moving
batch variables. �ere are 240 corresponding learned variables from the Batch-normalisation layers
– the learned means and variances. �e structure of the CNN is given below:

Layer (type) Output Shape Param #
=================================================================
Conv3d1a (Conv3D) (None, 98, 122, 102, 8) 224
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Conv3d1b (Conv3D) (None, 96, 120, 100, 8) 1736

BatchNorm1 (BatchNormalizat (None, 96, 120, 100, 8) 32

Relu1 (ReLU) (None, 96, 120, 100, 8) 0

AvePool1 (AveragePooling3D) (None, 48, 60, 50, 8) 0

Conv3d2a (Conv3D) (None, 46, 58, 48, 16) 3472

Conv3d2b (Conv3D) (None, 44, 56, 46, 16) 6928

BatchNorm2 (BatchNormalizat (None, 44, 56, 46, 16) 64

Relu2 (ReLU) (None, 44, 56, 46, 16) 0

AvePool2 (AveragePooling3D) (None, 22, 28, 23, 16) 0

Conv3d3a (Conv3D) (None, 20, 26, 21, 32) 13856

Conv3d3b (Conv3D) (None, 18, 24, 19, 32) 27680

BatchNorm3 (BatchNormalizat (None, 18, 24, 19, 32) 128

Relu3 (ReLU) (None, 18, 24, 19, 32) 0

AvePool3 (AveragePooling3D) (None, 9, 12, 9, 32) 0

Conv3d4a (Conv3D) (None, 7, 10, 7, 64) 55360

Conv3d4b (Conv3D) (None, 5, 8, 5, 64) 110656

BatchNorm4 (BatchNormalizat (None, 5, 8, 5, 64) 256

Relu4 (ReLU) (None, 5, 8, 5, 64) 0

AvePool4 (AveragePooling3D) (None, 2, 4, 2, 64) 0

flatten (Flatten) (None, 1024) 0

dense1 (Dense) (None, 32) 32800

dense2 (Dense) (None, 3) 99
=================================================================
Total params: 253,291
Trainable params: 253,051
Non-trainable params: 240

�e output of the network was three nodes (trained with so�max activation). �ese represented
three bins, p0, 1, 2q, into which the subjects were categorised by age. �ese bins were respectively

19



ages 10-39, 40-69, and 70-100. �ese bins loosely represented demographics of ‘young’, ‘middle-
aged’ and ‘elderly’. �e oldest participants were 90 years old, and the youngest was 17. �e overall
dataset was heavily skewed towards the �rst bin (with about 2

3
of all subjects lying in the �rst bin).

�us, the training set was truncated so as to contain the same number of members of each bin.
Anecdotally, when a�empting to train the network with the full datasets, the network ended up
learning to classify every subject into the �rst bin, achieving a 66.67% accuracy in a profound local
minimum of the error function.

�e provided data from the PAC competition was a �le of raw data, one of purely grey-ma�er
data, and another of white-ma�er data. It was noted in [6] that the greatest accuracy was achieved
from training with the grey-ma�er data only.

�is network was trained over 34 epochs to an accuracy of 72.22%, minimising Sparse Categor-
ical Crossentropy (as opposed to the MAE, as in [6]). �is is not a remarkable accuracy overall, but
interestingly, on the set of elderly subjects, the network performed with 100% accuracy; on the set
of young subjects, the network performed with 81.58% accuracy; and on the middle-aged subjects,
it performed with a dismal 35.09% accuracy – not much be�er than guessing. �is would suggest
that the network’s ability to detect some features corresponding to the age of the brain is signi�cant,
but the network still �nds the middle-aged subjects’ images ambiguous.

As a ma�er of fact, we are most interested in the comparison between the two extreme groups
in any case, and so for these two, we have fairly good accuracies from our network.

3.2 Heatmaps
Two concerns regarding the relevance propagation of this network are:

1. �e change from 2D to 3D convolutions and pooling functions;

2. How to propagate relevance backward through a Batch Normalisation layer.

�ankfully, the �rst concern is laid to rest by the fact that the 3D analogues for these layer types
have very much the same layout as the 2D versions.

To address the second concern, we look at what exactly the BatchNorm layer does. In training,
the BatchNorm layer is used to ensure that weights, biases and activations do not get too big. �is
helps avoid the famous ‘exploding gradient’ problem. To this end, the BatchNorm layer normalises
and standardises the moving activations to have zero mean and unit variance. �us, the layers learn
two parameters γ and β in training, and calculate two parameters µ and σ2 (the mean and variance)
from the training data. �ese values are then used in the feedforward portion of the network on
input variables xi as follows:

x̂i “
xi ´ µ
?
σ2 ` ε

yi “ γx̂i ` β

and the layer activations are yi. Here, ε is a small parameter used to ensure that we do not divide
by zero. In practive, ε was set to 10´9.

We can see from the structure of the BatchNorm layer, that activations are simply a�ne functions
of the input variables. �us, since there is no mixing of activations from the inputs, the relation
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between the relevances of the layers must be linear. Furthermore, for lower-level activations xi and
BatchNorm activations xj , the corresponding relevances must satisfy

ř

iRi “
ř

j Rj . �erefore we
have as a solution:3

Ri “ Rj. (3.1)

We now �nally have all we need to form the heatmaps of the MRI age decisions. Figures (8),
(9), (10) and (11) show comparisons of the MRI sections and corresponding heatmaps of an elderly
individual versus a young individual, for four transverse grey-ma�er image sections. Again, we
have normalised the relevance data such that the shown relevances fall in the range r0, 1s. �e
two subjects in question were correctly categorised by the network. �is is important, since we are
examining the relevances of what the network believes to show youth or age in the MRI images.

(a) Elderly individual MRI section (b) Heatmap

(c) Young individual MRI section (d) Heatmap

Figure 8

�e relevance propagations are demonstrably consistent, in the sense of De�nition (3). �e
maximum activation in the �nal layer of the CNN (without the so�max activation) for the elderly

3�is is a slight oversimpli�cation, but for the case of this network (which is relatively simple), the relation holds
well, as we will see. [7] shows that in fact, for some more complex networks, this method of propagation through
BatchNorm layers is not necessarily consistent, and shows a method to rectify this issue. �is is beyond the scope of
this report.
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individual was „ 9.3623, and the �nal propagated relevance also summed to „ 9.3623; with corre-
sponding to a total absolute error in relevance propagation of„ 0.0008%. For the young individual,
the maximum activation in the �nal layer was„ 6.6078, and the �nal propagated relevance summed
to „ 6.6079, corresponding to a total absolute error in relevance propagation of „ 0.0007%.

(a) Elderly individual MRI section (b) Heatmap

(c) Young individual MRI section (d) Heatmap

Figure 9
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(a) Elderly individual MRI section (b) Heatmap

(c) Young individual MRI section (d) Heatmap

Figure 10
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(a) Elderly individual MRI section (b) Heatmap

(c) Young individual MRI section (d) Heatmap

Figure 11

3.3 Analysis of Findings
Examination of Figures (8)-(11) shows that the network seems to base its decisions on the densities
of grey-ma�er on the outside of distinguishing structures, such as the cerebrum in Figures (9)-(11),
and the cerebellum in Figure (8). A particular focus of the network in the images is grey-ma�er
density in the gyri and sulci (the peaks and troughs of the outer folds of the brain structures). In
Figures (9) and (10), a main focus also seems to be the size and shape of grey-ma�er presence in the
ventricles (the cavities in the brain containing cerebrospinal �uid).

�e particular interest of the network in the grey-ma�er density in the sulci hearkens back to
the discussion about the e�ect of brain ageing on grey-ma�er density. As we can see by compari-
son of the original MRI images for the elderly and younger subjects, the grey-ma�er density of the
younger subject is much higher (as expected), but particularly so in the sulci. In fact, in Figure (11),
this is the only area of relevance to the network for both subjects.

�e focus on the neural ventricles is also suggestive of the discussion on brain ageing. �e ven-
tricles of the elderly subject are clearly much larger than those of the younger, and have less even
distribution of grey-ma�er. In Figure (10) this is shown particularly clearly, where the network fo-
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cuses very much on the size and shape of the ventricles of the elderly patient (among other areas).

In Figure (8), the network is clearly heavily focused on the grey-ma�er density in the arms of
the le� and right temporal lobes (the isolated globules on the right of the MRI images of this �gure).
�e network seems to focus on the fact that the density is much higher in the younger subject than
in the elder.

4 Discussion
We have derived the method of Deep Taylor Decomposition, which proves to be a consistent form
of layer-wise relevance propagation for analysis of network decision-making. We showed the basic
premise of the method on a CNN classifying handwri�en digits from the MNIST dataset, and ex-
amined the implications of the resulting heatmaps. We also saw an example of how heatmaps can
show us intuitively how and why networks can make incorrect decisions.

We ended with the application of the relevance decomposition to a CNN trained to classify brain
MRI images by age bracket; and this showed us the focus of the network on speci�c areas of the
brain images in this age determination. To this extent, the relevance heatmaps seemed to agree with
the expected areas of brain ageing salience.

�e code developed and used in the implementation of the networks and the associated heatmaps
for this report are available at the following sites:

MNIST fully-connected network:
https://github.com/DanielTaylor97/HonoursProject/blob/master/FCN MNISTheatmaps.

ipynb
or
https://colab.research.google.com/drive/1PjoaxZ5fj7Kut82GAOA6IibM-ecHeV1M

MNIST CNN:
https://github.com/DanielTaylor97/HonoursProject/blob/master/CNN MNISTheatmaps.

ipynb
or
https://colab.research.google.com/drive/1Gxyx1HkWEOqJJuiuE5DlNw8YvtiYsn9T

MRI data CNN:
https://github.com/DanielTaylor97/HonoursProject/blob/master/projectCNN.ipynb
or
https://colab.research.google.com/drive/1rg 39BdPrx67605AvXlE-Kq6i95yugmz

5 Conclusion
To expand on this report, the �rst order of business would be to train a more complex CNN for
the MRI data, to act as a be�er classi�er for more narrow age bins. While it is infeasible to get
a high-accuracy network to implement such predictions with the accuracy of a single year at this
point, networks such as those submi�ed to the PAC competition perform far be�er than the one
implemented in this report. �e task then would be to implement the heatmaps on these far more
complex architectures, some of which have layer types not dealt with in the scope of this report.
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To this end, it would be of aid to go into detail on the �ndings and methods developed in [7] to
propagate relevance backward through the network more precisely in complex network structures
including BatchNorm layers.

�e analysis of the heatmaps could also be improved with the input of a radiologist. �e opinions
of a highly trained individual would be invaluable to the relevance of the focuses of the networks.
Comparing the opinion of a professional to the relevance redistribution of a competent CNN deci-
sion would help to see if there are improvements that must be made to the architectures of such
networks in order to focus more directly on salient areas of brain ageing.

Deeper and more speci�c analyses of MRI images could also be implemented. As opposed to the
broad spectrum of brain ageing phenotypes, one could look in speci�c at a diease of brain ageing,
for example; such as Alzheimer’s Disease. �en one could use methods of relevance propagation to
determine salient areas of the e�ect of disease on the brain according to the classi�er.

�e incidence of diseases of ageing, and particularly cognitive decline, has been increasing in
developed parts of the world. �is is a terribly emotionally taxing experience for all involved in
such cases. �e development of new technologies and techniques for combating such diseases is of
utmost import in the world of healthcare. As we extend the lifespan of humans with the use of new
technological developments, we must remember too to increase the healthspan of humans – that
is, the length of time of a person’s life for which they are active and healthy, and able to enjoy the
life they lead. As we progress in our development and use of machine learning and other forms of
arti�cial intelligence, we ultimately are aiming to a brighter future in all aspects of our lives, through
the aid provided by these tools.
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